3 research outputs found

    Action Search: Spotting Actions in Videos and Its Application to Temporal Action Localization

    Full text link
    State-of-the-art temporal action detectors inefficiently search the entire video for specific actions. Despite the encouraging progress these methods achieve, it is crucial to design automated approaches that only explore parts of the video which are the most relevant to the actions being searched for. To address this need, we propose the new problem of action spotting in video, which we define as finding a specific action in a video while observing a small portion of that video. Inspired by the observation that humans are extremely efficient and accurate in spotting and finding action instances in video, we propose Action Search, a novel Recurrent Neural Network approach that mimics the way humans spot actions. Moreover, to address the absence of data recording the behavior of human annotators, we put forward the Human Searches dataset, which compiles the search sequences employed by human annotators spotting actions in the AVA and THUMOS14 datasets. We consider temporal action localization as an application of the action spotting problem. Experiments on the THUMOS14 dataset reveal that our model is not only able to explore the video efficiently (observing on average 17.3% of the video) but it also accurately finds human activities with 30.8% mAP.Comment: Accepted to ECCV 201

    Rethinking Online Action Detection in Untrimmed Videos: A Novel Online Evaluation Protocol

    No full text
    The Online Action Detection (OAD) problem needs to be revisited. Unlike traditional offline action detection approaches, where the evaluation metrics are clear and well established, in the OAD setting we find very few works and no consensus on the evaluation protocols to be used. In this work we propose to rethink the OAD scenario, clearly defining the problem itself and the main characteristics that the models which are considered online must comply with. We also introduce a novel metric: the Instantaneous Accuracy ( IAIA ). This new metric exhibits an online nature and solves most of the limitations of the previous metrics. We conduct a thorough experimental evaluation on 3 challenging datasets, where the performance of various baseline methods is compared to that of the state-of-the-art. Our results confirm the problems of the previous evaluation protocols, and suggest that an IA-based protocol is more adequate to the online scenario. The baselines models and a development kit with the novel evaluation protocol will be made publicly available.greenPattern Recognition and Bioinformatic
    corecore